cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294757 Expansion of Product_{k>=1} 1/(1 - k^k*x^k)^(k^k).

This page as a plain text file.
%I A294757 #19 Nov 14 2017 17:40:43
%S A294757 1,1,17,746,66442,9843731,2187951485,680615166718,282199710311343,
%T A294757 150389915850565698,100155578811552469018,81505577529171038120173,
%U A294757 79580089696277797740768316,91814299717377746850767747558
%N A294757 Expansion of Product_{k>=1} 1/(1 - k^k*x^k)^(k^k).
%C A294757 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = g(n) = n^n.
%H A294757 Seiichi Manyama, <a href="/A294757/b294757.txt">Table of n, a(n) for n = 0..214</a>
%F A294757 a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} A294773(k)*a(n-k) for n > 0.
%F A294757 a(n) ~ n^(2*n). - _Vaclav Kotesovec_, Nov 08 2017
%o A294757 (PARI) N=20; x='x+O('x^N); Vec(1/prod(k=1, N, (1-k^k*x^k)^k^k))
%o A294757 (PARI) sd(n) = sumdiv(n, d, d^(d+n+1));
%o A294757 a(n) = if (n==0, 1, sum(k=1, n, sd(k)*a(n-k))/n); \\ _Michel Marcus_, Nov 10 2017
%Y A294757 Column k=1 of A294756.
%Y A294757 Cf. A294704, A294773.
%K A294757 nonn
%O A294757 0,3
%A A294757 _Seiichi Manyama_, Nov 08 2017