This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294776 #15 May 20 2019 02:44:45 %S A294776 1616615,3411705,7436429,9408035,10163195,12838371,13037385,13844919, %T A294776 14969435,19605131,20414121,23783045,24997749,25113935,27568145, %U A294776 30478565,31473255,32518535,33999455,39946569,43134015,46115135,48215255,50907855,56179409,61558343 %N A294776 Squarefree products of k primes that are symmetrically distributed around their average. Case k = 6. %H A294776 Robert Israel, <a href="/A294776/b294776.txt">Table of n, a(n) for n = 1..10000</a> %p A294776 with(numtheory): P:=proc(q,h) local a,b,k,n,ok; %p A294776 for n from 2*3*5*7*11*13 to q do if not isprime(n) and issqrfree(n) then a:=ifactors(n)[2]; %p A294776 if nops(a)=h then b:=2*add(a[k][1],k=1..nops(a))/nops(a); ok:=1; %p A294776 for k from 1 to trunc(nops(a)/2) do if a[k][1]+a[nops(a)-k+1][1]<>b then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; fi; od; end: P(10^9,6); %p A294776 # Alternative: %p A294776 N:= 10^8: # to get all terms <= N %p A294776 M:= floor(fsolve(3*5*7*(M-7)*(M-5)*(M-3) = N)): %p A294776 P:= select(isprime, [seq(i,i=3..M/2,2)]): nP:= nops(P): %p A294776 Res:= NULL: %p A294776 for m from 10 by 2 to M do %p A294776 for ix from 1 to nP-2 do %p A294776 x:= P[ix]; %p A294776 if x >= m/2 or (x*(m-x))^3 >= N then break fi; %p A294776 if not isprime(m-x) then next fi; %p A294776 for iy from ix+1 to nP-1 do %p A294776 y:= P[iy]; %p A294776 if y >= m/2 or x*(m-x)*(y*(m-y))^2 >= N then break fi; %p A294776 if not isprime(m-y) then next fi; %p A294776 for iz from iy+1 to nP do %p A294776 z:= P[iz]; %p A294776 if z >= m/2 then break fi; %p A294776 v:= x*(m-x)*y*(m-y)*z*(m-z); %p A294776 if v > N then break fi; %p A294776 if isprime(m-z) then Res:= Res, v fi; %p A294776 od od od od: %p A294776 sort([Res]); # _Robert Israel_, May 19 2019 %o A294776 (PARI) isok(n, nb=6) = {if (issquarefree(n) && (omega(n)==nb), f = factor(n)[, 1]~; avg = vecsum(f)/#f; for (k=1, #f\2, if (f[k] + f[#f-k+1] != 2*avg, return(0));); return (1););} \\ _Michel Marcus_, Nov 10 2017 %Y A294776 Subsequence of A067885. %Y A294776 Cf. A006881 (k=2), A262723 (k=3), A294751 (k=4), A294752 (k=5). %K A294776 nonn %O A294776 1,1 %A A294776 _Paolo P. Lava_, Nov 09 2017 %E A294776 More terms from _Giovanni Resta_, Nov 09 2017