cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294780 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k*(k-1)/2).

This page as a plain text file.
%I A294780 #5 Nov 08 2017 12:38:10
%S A294780 1,0,2,6,14,32,74,166,370,810,1736,3682,7718,15976,32754,66508,133794,
%T A294780 266948,528424,1038178,2025456,3925360,7559298,14470162,27540598,
%U A294780 52130440,98159832,183905636,342896254,636384748,1175823512,2163221030,3963353706,7232529308
%N A294780 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k*(k-1)/2).
%C A294780 Convolution of A027999 and A258349.
%H A294780 Vaclav Kotesovec, <a href="/A294780/b294780.txt">Table of n, a(n) for n = 0..2000</a>
%F A294780 a(n) ~ exp(2*Pi * n^(3/4) / 3 - 7*Zeta(3) * sqrt(n) / (2*Pi^2) - 49*Zeta(3)^2 * n^(1/4) / (4*Pi^5) - 22411 * Zeta(3)^3 / (392*Pi^8) - Zeta(3) / (8*Pi^2) - 1/24) * sqrt(A) / (2^(23/12) * Pi^(1/24) * n^(59/96)), where A is the Glaisher-Kinkelin constant A074962.
%t A294780 nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k*(k-1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A294780 Cf. A027999, A156616, A206622, A258349, A294779.
%K A294780 nonn
%O A294780 0,3
%A A294780 _Vaclav Kotesovec_, Nov 08 2017