cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A359798 Cogrowth sequence of the group Z wr Z where wr denotes the wreath product.

Original entry on oeis.org

1, 4, 28, 232, 2108, 20384, 206392, 2165720, 23385340, 258532216, 2915343808, 33437862352, 389230520888, 4590271681064, 54767161155000, 660307913374352, 8036973478493436, 98672644594401736, 1221090110502080440, 15222093531642444504
Offset: 0

Views

Author

Andrew Elvey Price, Jan 13 2023

Keywords

Comments

a(n) is the number of words of length 2n in the letters a,a^(-1),t,t^(-1) that equal the identity of the group Z wr Z = .

Crossrefs

Related cogrowth sequences: A359797, A359705. Spherical growth sequence for this group is A294782.

A294781 Growth of the Lamplighter group: number of elements in the Lamplighter group Z wr Z of length up to n with respect to the standard generating set {a,t}.

Original entry on oeis.org

1, 5, 17, 53, 153, 421, 1125, 2937, 7537, 19093, 47881, 119133, 294585, 724869, 1776717, 4341425, 10582177, 25743269, 62527553, 151682821, 367594457, 890137893, 2154129717, 5210373929, 12597758737, 30449544885, 73580024633, 177767884973, 429416696185, 1037172672005, 2504846014621
Offset: 0

Views

Author

Zoran Sunic, Nov 08 2017

Keywords

Comments

The group is presented by .

Examples

			a(2)=17, since the elements of length up to 2 are 1, a, a^-1, t, t^-1, a^2, at, at^-1, a^-2, a^-1t, a^-1t^-1, ta, ta^-1, t^2, t^-1a, t^-1a^-1, t^-2.
		

Crossrefs

Cf. A294683. Partial sums of A294782.

Programs

  • Mathematica
    CoefficientList[ Series[-((x^2 + 1) (x - 1)^2 (x + 1)^3)/((x^3 + x^2 + x - 1)^2 (x^2 + 2 x - 1)), {x, 0, 27}], x] (* or *)
    LinearRecurrence[{4, -2, -4, -4, 4, 6, 4, 1}, {1, 5, 17, 53, 153, 421, 1125, 2937}, 28] (* Robert G. Wilson v, Aug 08 2018 *)

Formula

G.f.: (1-x)^2 (1+x)^3 (1+x^2) / ((1-2x-x^2)(1-x-x^2-x^3)^2).
Showing 1-2 of 2 results.