This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294792 #17 Jun 24 2018 16:00:21 %S A294792 0,0,3,1,18,345,2,136,7254,447156,5,946,158355,29032254,5647919665,18, %T A294792 7324,3580802,1961010826,1143822046786,694881637942816,43,56450, %U A294792 82968843,136166703562,238244961999013,434202285631866206,813943290958393433377,126,447138,1960981598,9651082393912,50656925726930746,276966813318877426118,1557582240509759704455566 %N A294792 Triangle read by rows, 1 <= k <= n: T(n,k) = non-isomorphic colorings of a toroidal n X k grid using exactly three colors under translational symmetry and swappable colors. %C A294792 Two colorings are equivalent if there is a permutation of the colors that takes one to the other in addition to translational symmetries on the torus. (Power Group Enumeration.) %D A294792 F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973. %H A294792 Marko Riedel et al., <a href="https://math.stackexchange.com/questions/2506511/">Burnside lemma and translational symmetries of the torus.</a> %F A294792 T(n,k) = (1/(n*k*Q!))*(Sum_{sigma in S_Q} Sum_{d|n} Sum_{f|k} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(k/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..Q} (exp(lz)-1)^j_l(sigma) with Q=3. The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket. %Y A294792 Cf. A294684, A294685, A294686, A294687, A294791, A294793, A294794, A295197. T(n,1) is A056296. %K A294792 nonn,tabl %O A294792 1,3 %A A294792 _Marko Riedel_, Nov 08 2017