cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294809 Expansion of Product_{k>=1} (1 - k^k*x^k)^k.

This page as a plain text file.
%I A294809 #13 Nov 16 2017 08:23:24
%S A294809 1,-1,-8,-73,-927,-13969,-254580,-5288596,-124795126,-3272571133,
%T A294809 -94692028369,-2991756529687,-102571647087930,-3791499758414848,
%U A294809 -150359326161180392,-6367668575791613601,-286854342016830115157,-13697147209040205869792
%N A294809 Expansion of Product_{k>=1} (1 - k^k*x^k)^k.
%C A294809 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n, g(n) = n^n.
%H A294809 Seiichi Manyama, <a href="/A294809/b294809.txt">Table of n, a(n) for n = 0..385</a>
%F A294809 a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} A294810(k)*a(n-k) for n > 0.
%o A294809 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-k^k*x^k)^k))
%Y A294809 Column k=1 of A294808.
%Y A294809 Cf. A294810.
%K A294809 sign
%O A294809 0,3
%A A294809 _Seiichi Manyama_, Nov 09 2017