This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294810 #17 Dec 23 2023 18:02:51 %S A294810 1,17,244,4161,78126,1686434,40353608,1074791425,31381236757, %T A294810 1000244144722,34522712143932,1283997101947770,51185893014090758, %U A294810 2177986570740006274,98526126098761952664,4722384497336874434561,239072435685151324847154 %N A294810 a(n) = Sum_{d|n} d^(n+2). %H A294810 Seiichi Manyama, <a href="/A294810/b294810.txt">Table of n, a(n) for n = 1..384</a> %F A294810 G.f.: Sum_{k>0} k^(k+2)*x^k/(1-(k*x)^k). %F A294810 L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^k) = Sum_{k>=1} a(k)*x^k/k. - _Seiichi Manyama_, Jun 02 2019 %t A294810 Table[Total[Divisors[n]^(n+2)],{n,20}] (* _Harvey P. Dale_, Dec 23 2023 *) %o A294810 (PARI) {a(n) = sigma(n, n+2)} %o A294810 (PARI) N=66; x='x+O('x^N); Vec(sum(k=1, N, k^(k+2)*x^k/(1-(k*x)^k))) %o A294810 (PARI) N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^k)))) \\ _Seiichi Manyama_, Jun 02 2019 %Y A294810 Cf. A294645, A294809. %K A294810 nonn %O A294810 1,2 %A A294810 _Seiichi Manyama_, Nov 09 2017