cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294813 Expansion of Product_{k>=1} 1/(1 - k^k*x^k)^k.

This page as a plain text file.
%I A294813 #18 Nov 16 2017 08:23:19
%S A294813 1,1,9,90,1162,17435,310193,6286826,144750451,3717959194,105725550762,
%T A294813 3293914191401,111659484775650,4089936343858976,160992739588472076,
%U A294813 6776415674628574634,303714862444753023205,14439925495117621425535
%N A294813 Expansion of Product_{k>=1} 1/(1 - k^k*x^k)^k.
%C A294813 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n, g(n) = n^n.
%H A294813 Seiichi Manyama, <a href="/A294813/b294813.txt">Table of n, a(n) for n = 0..385</a>
%F A294813 a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} A294810(k)*a(n-k) for n > 0.
%F A294813 a(n) ~ n^(n+1). - _Vaclav Kotesovec_, Nov 10 2017
%o A294813 (PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-k^k*x^k)^k))
%Y A294813 Cf. A294809, A294810.
%K A294813 nonn
%O A294813 0,3
%A A294813 _Seiichi Manyama_, Nov 09 2017