cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294826 Numerators of the partial sums of the reciprocals of twice the heptagonal numbers (k + 1)*(5*k + 2) = A135706(k+1) = 2*A000566(k+1), for k >= 0.

This page as a plain text file.
%I A294826 #25 Feb 16 2025 08:33:51
%S A294826 1,4,151,1315,36698,667109,10749479,399851303,401511863,18933826729,
%T A294826 246810236317,4700047812703,145981746528913,9796912235587651,
%U A294826 9810925971351679,9823210739716249,403196782523223569,11704197956499986461,269433333504358946963,5231145593209503407215,747842028258712790473
%N A294826 Numerators of the partial sums of the reciprocals of twice the heptagonal numbers (k + 1)*(5*k + 2) = A135706(k+1) = 2*A000566(k+1), for k >= 0.
%C A294826 The corresponding denominators are given in A294827.
%C A294826 For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [5,2].
%C A294826 The limit of the series is V(5,2) = lim_{n -> oo} V(5,2;n) = ((5/2)*log(5) - (2*phi-1)*(log(phi) - (Pi/5)*sqrt(7-4*phi)))/6, with the golden section phi:= (1 + sqrt(5))/2. The value is 0.661389626561... given by (1/2)*A244639.
%C A294826 In the Koecher reference v_5(2) =  (3/5)*V(5,2) = 0.39683377593671665701 ...is given as (1/4)*log(5) - (1/(2*sqrt(5)))*log((1 + sqrt(5))/2) + (Pi/10)*sqrt((5 - 2*sqrt(5))/5).
%D A294826 Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
%H A294826 G. C. Greubel, <a href="/A294826/b294826.txt">Table of n, a(n) for n = 0..600</a>
%H A294826 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DigammaFunction.html">Digamma Function</a>
%F A294826 a(n) = numerator(V(5,2;n)) with V(5,2;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 2)) = Sum_{k=0..n} 1/A135706(k+1) = (1/3)*Sum_{k=0..n} (1/(k + 2/5) - 1/(k+1)) = (-Psi(2/5) + Psi(n+7/5) - (gamma + Psi(n+2)))/3 with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620.
%e A294826 The rationals V(5,2;n), n >= 0, begin: 1/2, 4/7, 151/252, 1315/2142, 36698/58905, 667109/1060290, 10749479/16964640, 399851303/627691680, 401511863/627691680, 18933826729/29501508960, 246810236317/383519616480, ...
%e A294826 V(5,2;10^6) = 0.6613894266 (Maple, 10 digits) to be compared with 0.6613896266 giving the 10 digit value of V(5,2) from (1/2)*A244649.
%t A294826 Table[Numerator[Sum[1/((k+1)*(5*k+2)), {k,0,n}]], {n,0,25}] (* _G. C. Greubel_, Aug 29 2018 *)
%t A294826 Accumulate[1/(2*PolygonalNumber[7,Range[30]])]//Numerator (* _Harvey P. Dale_, Aug 31 2023 *)
%o A294826 (PARI) a(n) = numerator(sum(k=0, n, 1/((k + 1)*(5*k + 2)))); \\ _Michel Marcus_, Nov 17 2017
%o A294826 (Magma) [Numerator((&+[1/((k+1)*(5*k+2)): k in [0..n]])): n in [0..25]]; // _G. C. Greubel_, Aug 29 2018
%Y A294826 Cf. A001620, A000566, A135706, A294512, A294520/A294521 (V(5,1;n)), A244639.
%K A294826 nonn,frac,easy
%O A294826 0,2
%A A294826 _Wolfdieter Lang_, Nov 16 2017