This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294826 #25 Feb 16 2025 08:33:51 %S A294826 1,4,151,1315,36698,667109,10749479,399851303,401511863,18933826729, %T A294826 246810236317,4700047812703,145981746528913,9796912235587651, %U A294826 9810925971351679,9823210739716249,403196782523223569,11704197956499986461,269433333504358946963,5231145593209503407215,747842028258712790473 %N A294826 Numerators of the partial sums of the reciprocals of twice the heptagonal numbers (k + 1)*(5*k + 2) = A135706(k+1) = 2*A000566(k+1), for k >= 0. %C A294826 The corresponding denominators are given in A294827. %C A294826 For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [5,2]. %C A294826 The limit of the series is V(5,2) = lim_{n -> oo} V(5,2;n) = ((5/2)*log(5) - (2*phi-1)*(log(phi) - (Pi/5)*sqrt(7-4*phi)))/6, with the golden section phi:= (1 + sqrt(5))/2. The value is 0.661389626561... given by (1/2)*A244639. %C A294826 In the Koecher reference v_5(2) = (3/5)*V(5,2) = 0.39683377593671665701 ...is given as (1/4)*log(5) - (1/(2*sqrt(5)))*log((1 + sqrt(5))/2) + (Pi/10)*sqrt((5 - 2*sqrt(5))/5). %D A294826 Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193. %H A294826 G. C. Greubel, <a href="/A294826/b294826.txt">Table of n, a(n) for n = 0..600</a> %H A294826 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DigammaFunction.html">Digamma Function</a> %F A294826 a(n) = numerator(V(5,2;n)) with V(5,2;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 2)) = Sum_{k=0..n} 1/A135706(k+1) = (1/3)*Sum_{k=0..n} (1/(k + 2/5) - 1/(k+1)) = (-Psi(2/5) + Psi(n+7/5) - (gamma + Psi(n+2)))/3 with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620. %e A294826 The rationals V(5,2;n), n >= 0, begin: 1/2, 4/7, 151/252, 1315/2142, 36698/58905, 667109/1060290, 10749479/16964640, 399851303/627691680, 401511863/627691680, 18933826729/29501508960, 246810236317/383519616480, ... %e A294826 V(5,2;10^6) = 0.6613894266 (Maple, 10 digits) to be compared with 0.6613896266 giving the 10 digit value of V(5,2) from (1/2)*A244649. %t A294826 Table[Numerator[Sum[1/((k+1)*(5*k+2)), {k,0,n}]], {n,0,25}] (* _G. C. Greubel_, Aug 29 2018 *) %t A294826 Accumulate[1/(2*PolygonalNumber[7,Range[30]])]//Numerator (* _Harvey P. Dale_, Aug 31 2023 *) %o A294826 (PARI) a(n) = numerator(sum(k=0, n, 1/((k + 1)*(5*k + 2)))); \\ _Michel Marcus_, Nov 17 2017 %o A294826 (Magma) [Numerator((&+[1/((k+1)*(5*k+2)): k in [0..n]])): n in [0..25]]; // _G. C. Greubel_, Aug 29 2018 %Y A294826 Cf. A001620, A000566, A135706, A294512, A294520/A294521 (V(5,1;n)), A244639. %K A294826 nonn,frac,easy %O A294826 0,2 %A A294826 _Wolfdieter Lang_, Nov 16 2017