cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294827 Denominators of the partial sums of the reciprocals of twice the heptagonal numbers (k + 1)*(5*k + 2) = A135706(k+1) = 2*A000566(k+1), for k >= 0.

This page as a plain text file.
%I A294827 #10 Nov 17 2017 04:06:47
%S A294827 2,7,252,2142,58905,1060290,16964640,627691680,627691680,29501508960,
%T A294827 383519616480,7286872713120,225893054106720,15134834625150240,
%U A294827 15134834625150240,15134834625150240,620528219631159840,17995318369303635360,413892322493983613280,8029511056383282097632
%N A294827 Denominators of the partial sums of the reciprocals of twice the heptagonal numbers (k + 1)*(5*k + 2) = A135706(k+1) = 2*A000566(k+1), for k >= 0.
%C A294827 The corresponding numerators are given in A294826. Details are found there.
%F A294827 a(n) = denominator(V(5,2;n)) with V(5,2;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 2)) = Sum_{k=0..n} 1/A135706(k+1) = (1/3)*Sum_{k=0..n} (1/(k + 2/5) - 1/(k+1)). For this formula in terms of the digamma function see A294826.
%e A294827 See A294826 for the rationals.
%o A294827 (PARI) a(n) = denominator(sum(k=0, n, 1/((k + 1)*(5*k + 2)))); \\ _Michel Marcus_, Nov 17 2017
%Y A294827 Cf. A000566, A135706, A294826.
%K A294827 nonn,frac,easy
%O A294827 0,1
%A A294827 _Wolfdieter Lang_, Nov 16 2017