This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294829 #10 Nov 17 2017 20:35:49 %S A294829 3,48,624,1872,215280,1506960,16576560,39369330,564293730,9028699680, %T A294829 478521083040,4625703802720,41631334224480,707732681816160, %U A294829 51664485772579680,25832242886289840,2144076159562056720,357346026593676120,3692575608134653240,2584802925694257268 %N A294829 Denominators of the partial sums of the reciprocals of the numbers (k + 1)*(5*k + 3) = A147874(k+2), for k >= 0. %C A294829 The corresponding numerators are given in A294828. Details are found there. %H A294829 Robert Israel, <a href="/A294829/b294829.txt">Table of n, a(n) for n = 0..891</a> %F A294829 a(n) = denominator(V(5,3;n)) with V(5,3;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 3)) = Sum_{k=0..n} 1/A147874(k+2) = (1/2)*Sum_{k=0..n} (1/(k + 3/5) - 1/(k+1)). For this sum in terms of the digamma function see A294828. %e A294829 For the rationals see A294828. %p A294829 map(denom,ListTools:-PartialSums([seq(1/(k+1)/(5*k+3),k=0..50)])); # _Robert Israel_, Nov 17 2017 %o A294829 (PARI) a(n) = denominator(sum(k=0, n, 1/((k + 1)*(5*k + 3)))); \\ _Michel Marcus_, Nov 17 2017 %Y A294829 Cf. A147874, A294828, A294830. %K A294829 nonn,frac,easy %O A294829 0,1 %A A294829 _Wolfdieter Lang_, Nov 16 2017