cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294834 Numerators of the partial sums of the reciprocals of the positive tetradecagonal numbers (k + 1)*(6*k + 1) = A051866(k+1).

This page as a plain text file.
%I A294834 #13 Feb 16 2025 08:33:51
%S A294834 1,15,599,23035,2900123,30112021,1117973277,96393597197,6084978910411,
%T A294834 67042215785861,4094947551504521,274661892011507657,
%U A294834 20068897076286721961,1586702257063428405419,26992510145660626515763,54017546409271099350401,5242487768036648180534897,180077149085745155963315797
%N A294834 Numerators of the partial sums of the reciprocals of the positive tetradecagonal numbers (k + 1)*(6*k + 1) = A051866(k+1).
%C A294834 The corresponding denominators are given in A294835.
%C A294834 For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [6,1].
%C A294834 The limit of the series is V(6,1) = lim_{n -> oo} V(6,1;n) = (3/10)*log(3) + (2/5)*log(2) + (1/10)*Pi*sqrt(3). The value is 1.150982368094676386... given in A275792.
%D A294834 Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
%H A294834 G. C. Greubel, <a href="/A294834/b294834.txt">Table of n, a(n) for n = 0..600</a>
%H A294834 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DigammaFunction.html">Digamma Function</a>
%F A294834 a(n) = numerator(V(6,1;n)) with V(6,1;n) = Sum_{k=0..n} 1/((k + 1)*(6*k + 1)) = Sum_{k=0..n} 1/A051866(k+1) = (1/5)*Sum_{k=0..n} (1/(k + 1/6) - 1/(k + 1)) = (-Psi(1/6) + Psi(n+7/6) - (gamma + Psi(n+2)))/5 with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620.
%e A294834 The rationals V(6,1;n), n >= 0, begin: 1, 15/14, 599/546, 23035/20748, 2900123/2593500, 30112021/26799500, 1117973277/991581500, 96393597197/85276009000, 6084978910411/5372388567000, 67042215785861/59096274237000, 4094947551504521/3604872728457000, ...
%e A294834 V(6,1;10^6) = 1.150982200 (Maple, 10 digits) to be compared with the ten digits 1.150982368 obtained from V(6,1) given in A275792.
%t A294834 Table[Numerator[Sum[1/((k + 1)*(6*k + 1)), {k, 0, n}]], {n, 0, 50}] (* _G. C. Greubel_, Aug 30 2018 *)
%o A294834 (PARI) a(n) = numerator(sum(k=0, n, 1/((k + 1)*(6*k + 1)))); \\ _Michel Marcus_, Nov 21 2017
%o A294834 (Magma) [Numerator((&+[1/((k + 1)*(6*k + 1)): k in [0..n]])): n in [0..50]]; // _G. C. Greubel_, Aug 30 2018
%Y A294834 Cf. A001620, A051866, A275792, A294512, A294835.
%K A294834 nonn,frac,easy
%O A294834 0,2
%A A294834 _Wolfdieter Lang_, Nov 20 2017