cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294835 Denominators of the partial sums of the reciprocals of the positive tetradecagonal numbers (k + 1)*(6*k + 1) = A051866(k+1), for k >= 0.

This page as a plain text file.
%I A294835 #8 Nov 22 2017 03:26:28
%S A294835 1,14,546,20748,2593500,26799500,991581500,85276009000,5372388567000,
%T A294835 59096274237000,3604872728457000,241526472806619000,
%U A294835 17631432514883187000,1392883168675771773000,23679013867488120141000,47358027734976240282000,4593728690292695307354000,157718018366715872219154000
%N A294835 Denominators of the partial sums of the reciprocals of the positive tetradecagonal numbers (k + 1)*(6*k + 1) = A051866(k+1), for k >= 0.
%C A294835 The corresponding numerators are given in A294834. Details are found there.
%F A294835 a(n) = denominator(V(6,1;n)) with V(6,1;n) = Sum_{k=0..n} 1/((k + 1)*(6*k + 1)) = Sum_{k=0..n} 1/A051866(k+1) = (1/5)*Sum_{k=0..n} (1/(k + 1/6) - 1/(k + 1)). For the formula in terms of the digamma function see A294834.
%e A294835 See A294834 for the rationals.
%o A294835 (PARI) a(n) = denominator(sum(k=0, n, 1/((k + 1)*(6*k + 1)))); \\ _Michel Marcus_, Nov 21 2017
%Y A294835 Cf. A051866, A294834.
%K A294835 nonn,frac,easy
%O A294835 0,2
%A A294835 _Wolfdieter Lang_, Nov 20 2017