This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294844 #8 Feb 16 2025 08:33:51 %S A294844 1,1,8,34,114,411,1380,4573,14650,45995,141296,426364,1265443,3698011, %T A294844 10657134,30312395,85183177,236681860,650686538,1771098691,4775571943, %U A294844 12762628737,33821018537,88909273699,231945942992,600700301298,1544897610261,3946762859175,10018454809275,25274880698255 %N A294844 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(5*k-2)/6). %C A294844 Weigh transform of the heptagonal pyramidal numbers (A002413). %H A294844 M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] %H A294844 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %H A294844 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A294844 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HeptagonalPyramidalNumber.html">Heptagonal Pyramidal Number</a> %F A294844 G.f.: Product_{k>=1} (1 + x^k)^A002413(k). %F A294844 a(n) ~ (3*Zeta(5))^(1/10) / (2^(479/720) * 5^(3/10) * sqrt(Pi) * n^(3/5)) * exp(-2401 * Pi^16 / (1312200000000000 * Zeta(5)^3) - 49 * Pi^8 * Zeta(3) / (405000000 * Zeta(5)^2) - Zeta(3)^2 / (750*Zeta(5)) + (343*Pi^12 / (60750000000 * 2^(3/5) * 3^(1/5) * 5^(2/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (22500 * 2^(3/5) * 3^(1/5) * 5^(2/5) * Zeta(5)^(6/5))) * n^(1/5) - (49*Pi^8 / (5400000 * 2^(1/5) * 3^(2/5) * 5^(4/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(6/5) * 5^(4/5) * (3*Zeta(5))^(2/5))) * n^(2/5) + (7*Pi^4 / (900 * 2^(4/5) * 5^(1/5) * (3*Zeta(5))^(3/5))) * n^(3/5) + (5^(7/5) * (3*Zeta(5))^(1/5) / 2^(12/5)) * n^(4/5)). - _Vaclav Kotesovec_, Nov 10 2017 %t A294844 nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1) (5 k - 2)/6), {k, 1, nmax}], {x, 0, nmax}], x] %t A294844 a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1) (5 d - 2)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}] %Y A294844 Cf. A002413, A258343, A281156, A294837, A294840, A294842, A294843, A294845. %K A294844 nonn %O A294844 0,3 %A A294844 _Ilya Gutkovskiy_, Nov 09 2017