A294862 Solution of the complementary equation a(n) = a(n-2) + b(n-2) + 2, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 6, 8, 13, 17, 24, 29, 37, 43, 53, 60, 71, 80, 92, 102, 115, 126, 140, 153, 168, 182, 198, 214, 231, 248, 266, 284, 303, 322, 343, 363, 385, 406, 429, 452, 476, 500, 525, 550, 576, 602, 629, 656, 685, 713, 743, 772, 803, 833, 866, 897, 931, 963, 998
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3 b(1) = 4 (least "new number") a(2) = a(0) + b(0) + 2 = 6 Complement: (b(n)) = (3, 4, 5, 7, 9, 10, 11, 12, 14, 15, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = a[n - 2] + b[n - 2] + 2; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A294862 *) Table[b[n], {n, 0, 10}]
Comments