A294863 Solution of the complementary equation a(n) = a(n-2) + b(n-2) + 3, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 7, 9, 15, 18, 26, 31, 40, 46, 56, 63, 75, 83, 97, 106, 121, 131, 147, 158, 175, 188, 206, 220, 239, 255, 275, 292, 313, 331, 353, 372, 395, 416, 440, 462, 487, 510, 537, 561, 589, 614, 643, 669, 699, 726, 757, 786, 818, 848, 881, 912, 946, 979, 1014
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3 b(1) = 4 (least "new number") a(2) = a(0) + b(0) + 3 = 7 Complement: (b(n)) = (3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = a[n - 2] + b[n - 2] + 3; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A294863 *) Table[b[n], {n, 0, 10}]
Comments