A294864 Solution of the complementary equation a(n) = a(n-2) + b(n-2) + n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 6, 9, 15, 21, 29, 38, 48, 59, 71, 84, 99, 114, 131, 148, 167, 187, 208, 230, 253, 277, 302, 328, 356, 384, 414, 444, 476, 508, 542, 576, 613, 649, 688, 726, 767, 807, 850, 892, 937, 982, 1029, 1076, 1125, 1174, 1225, 1276, 1329, 1382, 1437, 1493, 1550
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3 b(1) = 4 (least "new number") a(2) = a(0) + b(0) + 2 = 6 Complement: (b(n)) = (3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A294860.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = a[n - 2] + b[n - 2] + n; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A294864 *) Table[b[n], {n, 0, 10}]
Comments