A294865 Solution of the complementary equation a(n) = a(n-2) + 2*b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 7, 10, 17, 22, 33, 40, 55, 64, 81, 92, 111, 124, 147, 162, 187, 204, 233, 252, 283, 304, 337, 360, 395, 420, 457, 484, 525, 554, 597, 628, 673, 706, 755, 790, 841, 878, 931, 970, 1025, 1066, 1123, 1166, 1225, 1270, 1331, 1378, 1443, 1492, 1559, 1610
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3 b(1) = 4 (least "new number") a(2) = a(0) + 2*b(0) = 7 Complement: (b(n)) = (3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A294860.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = a[n - 2] + 2*b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A294865 *) Table[b[n], {n, 0, 10}]
Comments