A294866 Solution of the complementary equation a(n) = 2*a(n-1) - a(n-2) + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 7, 17, 33, 57, 90, 133, 187, 253, 332, 425, 533, 657, 799, 960, 1141, 1343, 1567, 1814, 2085, 2381, 2703, 3052, 3429, 3835, 4271, 4738, 5237, 5770, 6338, 6942, 7583, 8262, 8980, 9738, 10537, 11378, 12262, 13190, 14163, 15182, 16248, 17362, 18525, 19738
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3 b(1) = 4 (least "new number") a(2) = 2*a(1) - a(0) + b(1) = 7 Complement: (b(n)) = (3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A294860.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = 2*a[n - 1] - a[n - 2] + b[n - 1]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A294866 *) Table[b[n], {n, 0, 10}]
Extensions
Definition corrected by Georg Fischer, Sep 27 2020
Comments