A294867 Solution of the complementary equation a(n) = 2*a(n-1) - a(n-2) + b(n-1) -1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 6, 14, 28, 49, 78, 116, 164, 223, 294, 379, 479, 595, 728, 879, 1049, 1239, 1450, 1683, 1939, 2219, 2524, 2855, 3214, 3602, 4020, 4469, 4950, 5464, 6012, 6595, 7214, 7870, 8564, 9297, 10070, 10884, 11740, 12639, 13582, 14570, 15604, 16685, 17815, 18995
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3 b(1) = 4 (least "new number") a(2) = 2*a(1) - a(0) + b(1) - 1 = 6 Complement: (b(n)) = (3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A294860.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = 2 a[n - 1] - a[n - 2] + b[n - 1] - 1; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A294867 *) Table[b[n], {n, 0, 10}]
Comments