A294868 Solution of the complementary equation a(n) = 2*a(n-1) - a(n-2) + b(n-1) -2, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 5, 12, 24, 42, 67, 100, 142, 195, 260, 338, 430, 537, 660, 800, 958, 1135, 1332, 1550, 1791, 2056, 2346, 2662, 3005, 3376, 3776, 4206, 4667, 5160, 5686, 6246, 6841, 7472, 8140, 8846, 9591, 10377, 11205, 12076, 12991, 13951, 14957, 16010, 17111, 18261
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3 b(1) = 4 (least "new number") a(2) = 2*a(1) - a(0) + b(1) - 2 = 5 Complement: (b(n)) = (3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A294860.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = 2 a[n - 1] - a[n - 2] + b[n - 1] - 2; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A294868 *) Table[b[n], {n, 0, 10}]
Comments