A294869 Solution of the complementary equation a(n) = 2*a(n-1) - a(n-2) + b(n-1) + 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 8, 20, 39, 66, 103, 151, 211, 284, 371, 473, 591, 726, 879, 1051, 1243, 1457, 1694, 1955, 2241, 2553, 2892, 3259, 3655, 4081, 4538, 5027, 5549, 6105, 6696, 7323, 7987, 8689, 9430, 10212, 11036, 11903, 12814, 13770, 14772, 15821, 16918, 18064, 19260
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3 b(1) = 4 (least "new number") a(2) = 2*a(1) - a(0) + b(1) + 1 = 8 Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A294860.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = 2 a[n - 1] - a[n - 2] + b[n - 1] + 1; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A294869 *) Table[b[n], {n, 0, 10}]
Comments