A294870 Solution of the complementary equation a(n) = 2*a(n-1) - a(n-2) + b(n-1) + 2, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 9, 23, 45, 76, 117, 170, 236, 316, 411, 522, 650, 796, 961, 1146, 1352, 1580, 1831, 2106, 2407, 2735, 3091, 3476, 3891, 4337, 4815, 5326, 5871, 6451, 7067, 7720, 8411, 9141, 9911, 10722, 11575, 12471, 13411, 14396, 15427, 16506, 17634, 18812, 20041
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3 b(1) = 4 (least "new number") a(2) = 2*a(1) - a(0) + b(1) + 2 = 9 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, ...) m
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A294860.
Programs
-
Mathematica
ex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = 2 a[n - 1] - a[n - 2] + b[n - 1] + 2; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A294870 *) Table[b[n], {n, 0, 10}]
Comments