A294872 Solution of the complementary equation a(n) = 2*a(n-1) - a(n-2) + b(n-1) + n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 9, 24, 49, 86, 137, 205, 292, 400, 531, 687, 870, 1082, 1325, 1601, 1912, 2260, 2647, 3075, 3546, 4063, 4628, 5243, 5910, 6631, 7408, 8243, 9138, 10095, 11116, 12203, 13358, 14583, 15880, 17251, 18698, 20223, 21828, 23515, 25286, 27143, 29088, 31123
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3 b(1) = 4 (least "new number") a(2) = 2*a(1) - a(0) + b(1) + 2 = 9 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A294860.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = 2 a[n - 1] - a[n - 2] + b[n - 1] + n; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A294872 *) Table[b[n], {n, 0, 10}]
Comments