cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294953 Expansion of Product_{k>=1} (1 - k^(2*k)*x^k)^k.

This page as a plain text file.
%I A294953 #13 Nov 15 2017 08:50:42
%S A294953 1,-1,-32,-2155,-259701,-48496253,-13001952944,-4732375549802,
%T A294953 -2246504006429898,-1348407213767476321,-998562531571744073815,
%U A294953 -894380298523142455736017,-953030939828900988652689704,-1191547999931410291515116161158
%N A294953 Expansion of Product_{k>=1} (1 - k^(2*k)*x^k)^k.
%C A294953 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n, g(n) = n^(2*n).
%H A294953 Seiichi Manyama, <a href="/A294953/b294953.txt">Table of n, a(n) for n = 0..213</a>
%F A294953 a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} A294955(k)*a(n-k) for n > 0.
%o A294953 (PARI) N=20; x='x+O('x^N); Vec(prod(k=1, N, (1-k^(2*k)*x^k)^k))
%Y A294953 Column k=2 of A294808.
%Y A294953 Cf. A294954, A294955.
%K A294953 sign
%O A294953 0,3
%A A294953 _Seiichi Manyama_, Nov 12 2017