cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294954 Expansion of Product_{k>=1} 1/(1 - k^(2*k)*x^k)^k.

This page as a plain text file.
%I A294954 #17 Nov 15 2017 08:53:26
%S A294954 1,1,33,2220,265132,49163241,13121450895,4762820449382,
%T A294954 2257130616816421,1353302193751862072,1001440612663683369940,
%U A294954 896481723303781965832069,954894526385647926192875010,1193519555165192704579377833814
%N A294954 Expansion of Product_{k>=1} 1/(1 - k^(2*k)*x^k)^k.
%C A294954 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n, g(n) = n^(2*n).
%H A294954 Seiichi Manyama, <a href="/A294954/b294954.txt">Table of n, a(n) for n = 0..214</a>
%F A294954 a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} A294955(k)*a(n-k) for n > 0.
%F A294954 a(n) ~ n^(2*n+1). - _Vaclav Kotesovec_, Nov 15 2017
%t A294954 nmax = 20; CoefficientList[Series[Product[1/(1 - k^(2*k)*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 15 2017 *)
%o A294954 (PARI) N=20; x='x+O('x^N); Vec(1/prod(k=1, N, (1-k^(2*k)*x^k)^k))
%Y A294954 Column k=2 of A294950.
%Y A294954 Cf. A294953, A294955.
%K A294954 nonn
%O A294954 0,3
%A A294954 _Seiichi Manyama_, Nov 12 2017