cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294957 Expansion of Product_{k>=1} 1/(1 - k*x^k)^(k^(k-1)).

This page as a plain text file.
%I A294957 #12 Nov 18 2017 04:21:53
%S A294957 1,1,5,32,300,3533,51650,894929,17981196,410826036,10518152538,
%T A294957 298209605418,9273131902539,313758357802886,11474239675400172,
%U A294957 450962279143408815,18954601400362304902,848385358833157331498,40285279861744621069122
%N A294957 Expansion of Product_{k>=1} 1/(1 - k*x^k)^(k^(k-1)).
%C A294957 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n^(n-1), g(n) = n.
%H A294957 Seiichi Manyama, <a href="/A294957/b294957.txt">Table of n, a(n) for n = 0..386</a>
%F A294957 a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} A294956(k)*a(n-k) for n > 0.
%o A294957 (PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-k*x^k)^k^(k-1)))
%Y A294957 Cf. A294956.
%K A294957 nonn
%O A294957 0,3
%A A294957 _Seiichi Manyama_, Nov 12 2017