cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294964 Numerators of the partial sums of the reciprocals of the positive numbers (k + 1)*(6*k + 5) = A049452(k+1).

This page as a plain text file.
%I A294964 #16 Feb 16 2025 08:33:51
%S A294964 1,27,1487,71207,423323,5021921,208393341,19767960169,9496615779853,
%T A294964 112702096556215,7360072449683999,524616965933727859,
%U A294964 526363371877036219,43813027890740553917,781806518388353706041,148866078528885256002173,15064339628673236669081953,538212602352090865654383697
%N A294964 Numerators of the partial sums of the reciprocals of the positive numbers (k + 1)*(6*k + 5) = A049452(k+1).
%C A294964 The corresponding denominators are given in A294965.
%C A294964 For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [6,5].
%C A294964 The limit of the series is V(6,5) = lim_{n -> oo} V(6,5;n) = . The value is (3/2)*log(3) + 2*log(2) - (1/2)*Pi*sqrt(3) = 0.3135137477... given in A294966.
%D A294964 Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
%H A294964 Robert Israel, <a href="/A294964/b294964.txt">Table of n, a(n) for n = 0..640</a>
%H A294964 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DigammaFunction.html">Digamma Function</a>
%F A294964 a(n) = numerator(V(6,5;n)) with V(6,5;n) = Sum_{k=0..n} 1/((k + 1)*(6*k + 5)) = Sum_{k=0..n} 1/A049452(k+1) = Sum_{k=0..n} (1/(k + 5/6) - 1/(k + 1)) = -Psi(5/6) + Psi(n+11/6) - (gamma + Psi(n+2)) with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620.
%e A294964 The rationals V(6,5;n), n >= 0, begin: 1/5, 27/110, 1487/5610, 71207/258060, 423323/1496748, 5021921/17462060, 208393341/715944460, 19767960169/67298779240, 9496615779853/32101517697480, ...
%e A294964 V(6,5;10^6) = 0.313513577 (Maple, 10 digits) to be compared with the rounded ten digits 0.3135137478 obtained from V(6,5) given in A294966.
%p A294964 map(numer,  ListTools:-PartialSums([seq(1/(k+1)/(6*k+5),k=0..20)])); # _Robert Israel_, Nov 29 2017
%t A294964 Table[Numerator[Sum[1/((k+1)*(6*k+5)), {k,0,n}]], {n,0,25}] (* _G. C. Greubel_, Aug 29 2018 *)
%o A294964 (PARI) a(n) = numerator(sum(k=0, n, 1/((k + 1)*(6*k + 5)))); \\ _Michel Marcus_, Nov 27 2017
%o A294964 (Magma) [Numerator((&+[1/((k+1)*(6*k+5)): k in [0..n]])): n in [0..25]]; // _G. C. Greubel_, Aug 29 2018
%Y A294964 Cf. A001620, A049452, A294512, A294966
%K A294964 nonn,frac,easy
%O A294964 0,2
%A A294964 _Wolfdieter Lang_, Nov 27 2017