cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294965 Denominators of the partial sums of the reciprocals of the numbers (k + 1)*(6*k + 5) = A049452(k+1).

This page as a plain text file.
%I A294965 #11 Nov 29 2017 03:08:20
%S A294965 5,110,5610,258060,1496748,17462060,715944460,67298779240,
%T A294965 32101517697480,378797908830264,24621864073967160,1748152349251668360,
%U A294965 1748152349251668360,145096644987888473880,2582720280784414835064,490716853349038818662160,49562402188252920684878160
%N A294965 Denominators of the partial sums of the reciprocals of the numbers (k + 1)*(6*k + 5) = A049452(k+1).
%C A294965 The corresponding numerators are given in A294964. There details are found.
%H A294965 Robert Israel, <a href="/A294965/b294965.txt">Table of n, a(n) for n = 0..640</a>
%F A294965 a(n) = denominator(V(6,5;n)) with V(6,5;n) = Sum_{k=0..n} 1/((k + 1)*(6*k + 5)) = Sum_{k=0..n} 1/A049452(k+1) = Sum_{k=0..n} (1/(k + 5/6) - 1/(k + 1)).
%e A294965 For the rationals V(6,5;n) see A294964.
%p A294965 map(denom,  ListTools:-PartialSums([seq(1/(k+1)/(6*k+5),k=0..20)])); # _Robert Israel_, Nov 29 2017
%o A294965 (PARI) a(n) = denominator(sum(k=0, n, 1/((k + 1)*(6*k + 5)))); \\ _Michel Marcus_, Nov 27 2017
%Y A294965 Cf. A049452, A294964.
%K A294965 nonn,frac,easy
%O A294965 0,1
%A A294965 _Wolfdieter Lang_, Nov 27 2017