A294967 Decimal expansion of (1/9)*Hurwitz Zeta(2, 2/3) = (1/9)*Psi(1, 2/3), with the Polygamma function Psi.
3, 4, 0, 4, 3, 0, 6, 0, 1, 0, 3, 9, 8, 5, 7, 4, 8, 9, 9, 9, 8, 5, 9, 0, 8, 0, 3, 6, 9, 7, 2, 9, 8, 3, 5, 0, 3, 5, 9, 1, 8, 8, 3, 4, 3, 3, 7, 4, 8, 2, 3, 2, 6, 2, 2, 1, 5, 8, 6, 4, 7, 3, 7, 1, 2, 5, 4, 4, 8, 7, 1, 6, 7, 4, 2, 2, 8, 0, 1, 6, 8, 2, 1, 2, 9, 5, 5, 8, 3, 7, 0, 8, 1, 5, 6, 5, 6, 0, 5, 1, 8, 0, 1, 4, 7, 4, 1, 1, 0, 7, 7, 2, 2, 8, 6, 7, 7, 9, 7, 3, 1, 7, 9, 8, 3, 1
Offset: 0
Examples
0.340430601039857489998590803697298350359188343374823262215864737125448716...
Links
- Eric Weisstein's World of Mathematics, Hurwitz Zeta Function.
- Eric Weisstein's World of Mathematics, Polygamma Function.
Programs
-
Mathematica
RealDigits[4*Pi^2/27 - PolyGamma[1, 1/3]/9, 10, 126][[1]] (* Amiram Eldar, Oct 02 2020 *) RealDigits[HurwitzZeta[2, 2/3]/9, 10, 150][[1]] (* Vaclav Kotesovec, Oct 02 2020 *)
-
PARI
zetahurwitz(2,2/3)/9 \\ Charles R Greathouse IV, Jan 30 2018
Formula
From Amiram Eldar, Oct 02 2020: (Start)
Equals Integral_{1..oo} log(x)/(x^3-1) dx.
Equals 4*Pi^2/27 - A214550. (End)
Extensions
Data corrected by Amiram Eldar, Oct 02 2020
Comments