This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294974 #20 Jun 03 2018 09:00:07 %S A294974 1,-42,4032,-659904,118064226,-22406634432,4407587356032, %T A294974 -888750999070464,182478248639753472,-37986867560948245674, %U A294974 7994272624037726124672,-1697243410477799687716416,362963150140702802158191360,-78095916585903527021840348352 %N A294974 Coefficients in expansion of (E_2^4/E_4)^(1/8). %C A294974 Also coefficients in expansion of (E_2^8/E_8)^(1/16). %F A294974 G.f.: Product_{n>=1} (1-q^n)^A294626(n). %F A294974 a(n) ~ (-1)^n * 2^(13/8) * Pi * exp(Pi*sqrt(3)*n) / (Gamma(1/8) * Gamma(1/3)^(9/4) * n^(7/8)). - _Vaclav Kotesovec_, Jun 03 2018 %t A294974 terms = 14; %t A294974 E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; %t A294974 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; %t A294974 (E2[x]^4/E4[x])^(1/8) + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 26 2018 *) %Y A294974 Cf. A004009 (E_4), A006352 (E_2), A108091, A289247, A289291, A294626, A294976. %K A294974 sign %O A294974 0,2 %A A294974 _Seiichi Manyama_, Feb 12 2018