This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294976 #19 Nov 26 2024 16:11:13 %S A294976 1,-30,-11340,-3912600,-1520905170,-636170644008,-278687199310200, %T A294976 -126000360658968000,-58290111778749466140,-27440829122946510954630, %U A294976 -13096614404248661886145848,-6320198941502349713305002120,-3077986352751848627729986859400 %N A294976 Coefficients in expansion of (E_6/E_2^6)^(1/12). %F A294976 G.f.: Product_{n>=1} (1-q^n)^A294975(n). %F A294976 a(n) ~ -Gamma(1/3)^2 * Gamma(1/4)^(10/3) * exp(2*Pi*n) / (16 * 2^(1/12) * 3^(7/12) * Pi^(5/2) * Gamma(1/12) * n^(13/12)). - _Vaclav Kotesovec_, Jun 03 2018 %F A294976 Equivalently, a(n) ~ -Gamma(1/3) * Gamma(1/4)^(7/3) * exp(2*Pi*n) / (2^(23/6) * 3^(23/24) * Pi^2 * sqrt(1 + sqrt(3)) * n^(13/12)). - _Vaclav Kotesovec_, Nov 26 2024 %t A294976 terms = 13; %t A294976 E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; %t A294976 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; %t A294976 (E6[x]/E2[x]^6)^(1/12) + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 26 2018 *) %Y A294976 Cf. A109817, A289565, A294974, A294975. %K A294976 sign %O A294976 0,2 %A A294976 _Seiichi Manyama_, Feb 12 2018