cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294977 Square array T(n, k) read by antidiagonals, n > 0 and k > 0: T(n, k) is the smallest positive integer that, when written in binary, contains both binary n and binary k as substrings.

This page as a plain text file.
%I A294977 #87 Mar 03 2018 09:48:28
%S A294977 1,2,2,3,2,3,4,6,6,4,5,4,3,4,5,6,5,12,12,5,6,7,6,11,4,11,6,7,8,14,6,
%T A294977 20,20,6,14,8,9,8,7,12,5,12,7,8,9,10,9,24,28,13,13,28,24,9,10,11,10,
%U A294977 19,8,23,6,23,8,19,10,11,12,11,26,9,40,14,14,40,9,26
%N A294977 Square array T(n, k) read by antidiagonals, n > 0 and k > 0: T(n, k) is the smallest positive integer that, when written in binary, contains both binary n and binary k as substrings.
%C A294977 When computing T(n, k), we have three situations:
%C A294977 - the binary representation of n appears in the binary representation of k or vice versa; then T(n, k) = max(n, k); for example T(1, 2) = 2,
%C A294977 - otherwise a strict suffix of the binary representation of n equals a strict prefix of the binary representation of k or vice versa; then max(n, k) < T(n, k) < min(A163621(n, k), A163621(k, n)); for example T(2, 3) = 6,
%C A294977 - otherwise the binary representations of n and of k do not overlap; then T(n, k) = min(A163621(n, k), A163621(k, n)); for example T(10, 12) = 172.
%H A294977 Rémy Sigrist, <a href="/A294977/a294977.gp.txt">PARI program for A294977</a>
%F A294977 T(n, n) = n.
%F A294977 T(n, 1) = n.
%F A294977 T(n, k) = T(k, n).
%F A294977 T(T(n, k), k) = T(n, k) (for any fixed n > 0, the function k -> T(n, k) is a projection).
%F A294977 A165819(n) = T(n, 2*n-1).
%F A294977 A165820(n) = T(n, n^2).
%F A294977 A165821(n) = T(n, A000040(n)).
%F A294977 A165822(n) = T(n, A000045(n)).
%F A294977 T(n, k) >= n with equality iff the binary representation of k appears in the binary representation of n.
%F A294977 T(n, k) >= max(n, k).
%F A294977 T(n, k) <= min(A163621(n, k), A163621(k, n)) with equality iff the binary representations of n and of k do not overlap.
%e A294977 Array T(n, k) begins (in decimal):
%e A294977   n\k|    1    2    3    4    5    6    7    8    9   10   11   12
%e A294977   ---+------------------------------------------------------------
%e A294977     1|    1    2    3    4    5    6    7    8    9   10   11   12
%e A294977     2|    2    2    6    4    5    6   14    8    9   10   11   12
%e A294977     3|    3    6    3   12   11    6    7   24   19   26   11   12
%e A294977     4|    4    4   12    4   20   12   28    8    9   20   44   12
%e A294977     5|    5    5   11   20    5   13   23   40   37   10   11   44
%e A294977     6|    6    6    6   12   13    6   14   24   25   26   22   12
%e A294977     7|    7   14    7   28   23   14    7   56   39   58   23   28
%e A294977     8|    8    8   24    8   40   24   56    8   72   40   88   24
%e A294977 Array T(n, k) begins (in binary):
%e A294977    n\k|     1    10     11    100     101    110      111    1000     1001    1010
%e A294977   ----+---------------------------------------------------------------------------
%e A294977      1|     1    10     11    100     101    110      111    1000     1001    1010
%e A294977     10|    10    10    110    100     101    110     1110    1000     1001    1010
%e A294977     11|    11   110     11   1100    1011    110      111   11000    10011   11010
%e A294977    100|   100   100   1100    100   10100   1100    11100    1000     1001   10100
%e A294977    101|   101   101   1011  10100     101   1101    10111  101000   100101    1010
%e A294977    110|   110   110    110   1100    1101    110     1110   11000    11001   11010
%e A294977    111|   111  1110    111  11100   10111   1110      111  111000   100111  111010
%e A294977   1000|  1000  1000  11000   1000  101000  11000   111000    1000  1001000  101000
%o A294977 (PARI) See Links section.
%Y A294977 Cf. A000040, A000045, A163621, A165819, A165820, A165821, A165822.
%K A294977 nonn,base,tabl
%O A294977 1,2
%A A294977 _Rémy Sigrist_, Mar 02 2018