This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294978 #19 Jun 03 2018 09:25:32 %S A294978 1,42,-2268,395304,-64600914,11644170552,-2188350306072, %T A294978 424652412357696,-84326944950450972,17044476557469661986, %U A294978 -3493525880987663047128,724189608821718233434296,-151528575864988356484968840,31955212589107172812017247992 %N A294978 Coefficients in expansion of (E_4/E_2^4)^(1/8). %C A294978 Also coefficients in expansion of (E_8/E_2^8)^(1/16). %F A294978 Convolution inverse of A294974. %F A294978 G.f.: Product_{n>=1} (1-q^n)^(-A294626(n)). %F A294978 a(n) ~ -(-1)^n * Pi^(5/4) * exp(Pi*sqrt(3)*n) / (2^(19/8) * 3^(9/8) * Gamma(2/3)^(9/4) * Gamma(7/8) * n^(9/8)). - _Vaclav Kotesovec_, Jun 03 2018 %t A294978 terms = 14; %t A294978 E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; %t A294978 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; %t A294978 (E4[x]/E2[x]^4)^(1/8) + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 26 2018 *) %Y A294978 Cf. A004009 (E_4), A006352 (E_2), A108091, A289565, A294626, A294974. %K A294978 sign %O A294978 0,2 %A A294978 _Seiichi Manyama_, Feb 12 2018