This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294979 #18 Jun 03 2018 07:41:21 %S A294979 1,30,12240,4620000,1915684770,839549366208,381374756189280, %T A294979 177631327935911040,84272487587664762240,40549569894460426101150, %U A294979 19730577674798681251391712,9687875889040210133058857760,4792614349874614536514510456320 %N A294979 Coefficients in expansion of (E_2^6/E_6)^(1/12). %F A294979 Convolution inverse of A294976. %F A294979 G.f.: Product_{n>=1} (1-q^n)^(-A294975(n)). %F A294979 a(n) ~ 2^(13/12) * 3^(1/3) * sqrt(Pi) * exp(2*Pi*n) / (Gamma(1/12) * Gamma(1/4)^(4/3) * n^(11/12)). - _Vaclav Kotesovec_, Jun 03 2018 %t A294979 terms = 13; %t A294979 E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; %t A294979 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; %t A294979 (E2[x]^6/E6[x])^(1/12) + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 26 2018 *) %Y A294979 Cf. A289291, A289540, A294975, A294976. %K A294979 nonn %O A294979 0,2 %A A294979 _Seiichi Manyama_, Feb 12 2018