This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294984 #10 Sep 20 2019 04:52:59 %S A294984 1,525,487630,709097481,1303699790001,2713420774885145, %T A294984 6078597035484932995,14303426764164190428105, %U A294984 34883776613634643730481238,87451065686506297464527100009,224099040671253218432160498959100,584668421756097333754383886118155275 %N A294984 Number of compositions (ordered partitions) of 1 into exactly 5n+1 powers of 1/(n+1). %H A294984 Alois P. Heinz, <a href="/A294984/b294984.txt">Table of n, a(n) for n = 0..287</a> %F A294984 a(n) ~ 5^(5*n + 3/2) / (4 * Pi^2 * n^2). - _Vaclav Kotesovec_, Sep 20 2019 %p A294984 b:= proc(n, r, p, k) option remember; %p A294984 `if`(n<r, 0, `if`(r=0, `if`(n=0, p!, 0), add( %p A294984 b(n-j, k*(r-j), p+j, k)/j!, j=0..min(n, r)))) %p A294984 end: %p A294984 a:= n-> (k-> `if`(n=0, 1, b(k*n+1, 1, 0, n+1)))(5): %p A294984 seq(a(n), n=0..15); %t A294984 b[n_, r_, p_, k_] := b[n, r, p, k] = If[n < r, 0, If[r == 0, If[n == 0, p!, 0], Sum[b[n - j, k*(r - j), p + j, k]/j!, {j, 0, Min[n, r]}]]]; %t A294984 a[n_] := If[n == 0, 1, b[#*n + 1, 1, 0, n + 1]]&[5]; %t A294984 Table[a[n], {n, 0, 15}] (* _Jean-François Alcover_, May 21 2018, translated from Maple *) %Y A294984 Row n=5 of A294746. %K A294984 nonn %O A294984 0,2 %A A294984 _Alois P. Heinz_, Nov 12 2017