This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294985 #10 Sep 20 2019 05:06:15 %S A294985 1,4347,40647178,701954099115,16596702491586251,461871979542736134676, %T A294985 14138484434475011392912026,460977928965130046448503507051, %U A294985 15732393344641740454307566725567376,556054452693724489326948624520266970011,20208669423838553069878798723999482271266772 %N A294985 Number of compositions (ordered partitions) of 1 into exactly 6n+1 powers of 1/(n+1). %H A294985 Alois P. Heinz, <a href="/A294985/b294985.txt">Table of n, a(n) for n = 0..215</a> %F A294985 a(n) ~ 6^(6*n + 3/2) / (2*Pi*n)^(5/2). - _Vaclav Kotesovec_, Sep 20 2019 %p A294985 b:= proc(n, r, p, k) option remember; %p A294985 `if`(n<r, 0, `if`(r=0, `if`(n=0, p!, 0), add( %p A294985 b(n-j, k*(r-j), p+j, k)/j!, j=0..min(n, r)))) %p A294985 end: %p A294985 a:= n-> (k-> `if`(n=0, 1, b(k*n+1, 1, 0, n+1)))(6): %p A294985 seq(a(n), n=0..15); %t A294985 b[n_, r_, p_, k_] := b[n, r, p, k] = If[n < r, 0, If[r == 0, If[n == 0, p!, 0], Sum[b[n - j, k*(r - j), p + j, k]/j!, {j, 0, Min[n, r]}]]]; %t A294985 a[n_] := If[n == 0, 1, b[#*n + 1, 1, 0, n + 1]]&[6]; %t A294985 Table[a[n], {n, 0, 15}] (* _Jean-François Alcover_, May 21 2018, translated from Maple *) %Y A294985 Row n=6 of A294746. %K A294985 nonn %O A294985 0,2 %A A294985 _Alois P. Heinz_, Nov 12 2017