cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294985 Number of compositions (ordered partitions) of 1 into exactly 6n+1 powers of 1/(n+1).

This page as a plain text file.
%I A294985 #10 Sep 20 2019 05:06:15
%S A294985 1,4347,40647178,701954099115,16596702491586251,461871979542736134676,
%T A294985 14138484434475011392912026,460977928965130046448503507051,
%U A294985 15732393344641740454307566725567376,556054452693724489326948624520266970011,20208669423838553069878798723999482271266772
%N A294985 Number of compositions (ordered partitions) of 1 into exactly 6n+1 powers of 1/(n+1).
%H A294985 Alois P. Heinz, <a href="/A294985/b294985.txt">Table of n, a(n) for n = 0..215</a>
%F A294985 a(n) ~ 6^(6*n + 3/2) / (2*Pi*n)^(5/2). - _Vaclav Kotesovec_, Sep 20 2019
%p A294985 b:= proc(n, r, p, k) option remember;
%p A294985       `if`(n<r, 0, `if`(r=0, `if`(n=0, p!, 0), add(
%p A294985        b(n-j, k*(r-j), p+j, k)/j!, j=0..min(n, r))))
%p A294985     end:
%p A294985 a:= n-> (k-> `if`(n=0, 1, b(k*n+1, 1, 0, n+1)))(6):
%p A294985 seq(a(n), n=0..15);
%t A294985 b[n_, r_, p_, k_] := b[n, r, p, k] = If[n < r, 0, If[r == 0, If[n == 0, p!, 0], Sum[b[n - j, k*(r - j), p + j, k]/j!, {j, 0, Min[n, r]}]]];
%t A294985 a[n_] := If[n == 0, 1, b[#*n + 1, 1, 0, n + 1]]&[6];
%t A294985 Table[a[n], {n, 0, 15}] (* _Jean-François Alcover_, May 21 2018, translated from Maple *)
%Y A294985 Row n=6 of A294746.
%K A294985 nonn
%O A294985 0,2
%A A294985 _Alois P. Heinz_, Nov 12 2017