This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294987 #10 Sep 20 2019 05:07:09 %S A294987 1,441675,663134389930,2594884910993019575,16336038155342083651640376, %T A294987 130958058407369286623026190867082, %U A294987 1206534243283932582765850205674424343577,12176825528022093702548525617184407475359333407,131223281654667714701311635640432890136981994039662720 %N A294987 Number of compositions (ordered partitions) of 1 into exactly 8n+1 powers of 1/(n+1). %H A294987 Alois P. Heinz, <a href="/A294987/b294987.txt">Table of n, a(n) for n = 0..139</a> %F A294987 a(n) ~ 8^(8*n + 3/2) / (2*Pi*n)^(7/2). - _Vaclav Kotesovec_, Sep 20 2019 %p A294987 b:= proc(n, r, p, k) option remember; %p A294987 `if`(n<r, 0, `if`(r=0, `if`(n=0, p!, 0), add( %p A294987 b(n-j, k*(r-j), p+j, k)/j!, j=0..min(n, r)))) %p A294987 end: %p A294987 a:= n-> (k-> `if`(n=0, 1, b(k*n+1, 1, 0, n+1)))(8): %p A294987 seq(a(n), n=0..12); %t A294987 b[n_, r_, p_, k_] := b[n, r, p, k] = If[n < r, 0, If[r == 0, If[n == 0, p!, 0], Sum[b[n - j, k*(r - j), p + j, k]/j!, {j, 0, Min[n, r]}]]]; %t A294987 a[n_] := If[n == 0, 1, b[#*n + 1, 1, 0, n + 1]]&[8]; %t A294987 Table[a[n], {n, 0, 12}] (* _Jean-François Alcover_, May 21 2018, translated from Maple *) %Y A294987 Row n=8 of A294746. %K A294987 nonn %O A294987 0,2 %A A294987 _Alois P. Heinz_, Nov 12 2017