This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294988 #10 Sep 20 2019 05:07:34 %S A294988 1,5259885,121218250616173,8684483842898500680225, %T A294988 1085776473843765315524916060126, %U A294988 179835209135492330050411858875313971595,34994508245963099403565066291175900528344592700,7565469782615095731665958935875509379368611893407583633 %N A294988 Number of compositions (ordered partitions) of 1 into exactly 9n+1 powers of 1/(n+1). %H A294988 Alois P. Heinz, <a href="/A294988/b294988.txt">Table of n, a(n) for n = 0..117</a> %F A294988 a(n) ~ 9^(9*n + 3/2) / (16 * Pi^4 * n^4). - _Vaclav Kotesovec_, Sep 20 2019 %p A294988 b:= proc(n, r, p, k) option remember; %p A294988 `if`(n<r, 0, `if`(r=0, `if`(n=0, p!, 0), add( %p A294988 b(n-j, k*(r-j), p+j, k)/j!, j=0..min(n, r)))) %p A294988 end: %p A294988 a:= n-> (k-> `if`(n=0, 1, b(k*n+1, 1, 0, n+1)))(9): %p A294988 seq(a(n), n=0..10); %t A294988 b[n_, r_, p_, k_] := b[n, r, p, k] = If[n < r, 0, If[r == 0, If[n == 0, p!, 0], Sum[b[n - j, k*(r - j), p + j, k]/j!, {j, 0, Min[n, r]}]]]; %t A294988 a[n_] := If[n == 0, 1, b[#*n + 1, 1, 0, n + 1]]&[9]; %t A294988 Table[a[n], {n, 0, 10}] (* _Jean-François Alcover_, May 21 2018, translated from Maple *) %Y A294988 Row n=9 of A294746. %K A294988 nonn %O A294988 0,2 %A A294988 _Alois P. Heinz_, Nov 12 2017