This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294989 #10 Sep 20 2019 05:08:00 %S A294989 1,68958747,27212315953140892,39880061006390454401626995, %T A294989 110656003660578876500875377620844376, %U A294989 423205992807070499591372608204571223421862945,1944053748730350081768848916806347783770184147756976500 %N A294989 Number of compositions (ordered partitions) of 1 into exactly 10n+1 powers of 1/(n+1). %H A294989 Alois P. Heinz, <a href="/A294989/b294989.txt">Table of n, a(n) for n = 0..101</a> %F A294989 a(n) ~ 10^(10*n + 3/2) / (2*Pi*n)^(9/2). - _Vaclav Kotesovec_, Sep 20 2019 %p A294989 b:= proc(n, r, p, k) option remember; %p A294989 `if`(n<r, 0, `if`(r=0, `if`(n=0, p!, 0), add( %p A294989 b(n-j, k*(r-j), p+j, k)/j!, j=0..min(n, r)))) %p A294989 end: %p A294989 a:= n-> (k-> `if`(n=0, 1, b(k*n+1, 1, 0, n+1)))(10): %p A294989 seq(a(n), n=0..10); %t A294989 b[n_, r_, p_, k_] := b[n, r, p, k] = If[n < r, 0, If[r == 0, If[n == 0, p!, 0], Sum[b[n - j, k*(r - j), p + j, k]/j!, {j, 0, Min[n, r]}]]]; %t A294989 a[n_] := If[n == 0, 1, b[#*n + 1, 1, 0, n + 1]]&[10]; %t A294989 Table[a[n], {n, 0, 10}] (* _Jean-François Alcover_, May 21 2018, translated from Maple *) %Y A294989 Row n=10 of A294746. %K A294989 nonn %O A294989 0,2 %A A294989 _Alois P. Heinz_, Nov 12 2017