A294995 Numbers n such that sopfr(n) = sopfr(n-1) + sopfr(n-2), where sopfr is the sum of prime factors of n with multiplicity (A001414).
23, 610, 1162, 1243, 1651, 7385, 13066, 37129, 38123, 41194, 41361, 48511, 59452, 72179, 83151, 87375, 98877, 103528, 126497, 138190, 141037, 148657, 157994, 162410, 175077, 262788, 296482, 299398, 351226, 354321, 418134, 425099, 452130, 465254, 470494
Offset: 1
Keywords
Examples
610 is in the sequence since sopfr(608) = 29, sopfr(609) = 39 and sopfr(610) = 68 = 39 + 29.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1179
Programs
-
Mathematica
f[n_]:=Plus @@ Times @@@ FactorInteger@ n; Select[Range[10^5], f[#]==f[#-1]+f[#-2] &]
-
PARI
sopfr(n,f=factor(n))=f[,1]~*f[,2] list(lim)=my(v=List(),a=0,b=2,c); forfactored(k=3,lim\1, c=sopfr(k[2]); if(c==a+b, listput(v,k[1])); a=b; b=c); Vec(v) \\ Charles R Greathouse IV, Nov 12 2017