This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295015 #13 Aug 19 2022 14:07:30 %S A295015 25,225,1225,1521,2025,2500,3025,4225,5041,11025,12544,13225,21025, %T A295015 22500,24025,34225,35344,42025,44521,52441,55225,112225,122500,133225, %U A295015 135424,150544,151321,152100,202500,212521,235225,245025,250000,251001,252004,255025,302500 %N A295015 Squares whose largest digit is 5. %H A295015 Michael S. Branicky, <a href="/A295015/b295015.txt">Table of n, a(n) for n = 1..10000</a> %F A295015 a(n) = A295005(n)^2. %t A295015 Select[Range[600]^2,Max[IntegerDigits[#]]==5&] (* _Harvey P. Dale_, Aug 19 2022 *) %o A295015 (PARI) is_A295015(n)=issquare(n)&&n&&vecmax(digits(n))==5 \\ The "n&&" avoids an error message for n = 0. %o A295015 (Python) %o A295015 from math import isqrt %o A295015 def aupto(limit): %o A295015 alst, rootlimit = [], isqrt(limit) %o A295015 for k in range(1, rootlimit+1): %o A295015 if max(str(k*k)) == "5": alst.append(k*k) %o A295015 return alst %o A295015 print(aupto(302500)) # _Michael S. Branicky_, May 15 2021 %Y A295015 Cf. A295015 (square roots of the terms); A277946, A277947, A277948, A295016 .. A295019 (analog for digits 2 through 9); A295025 (analog for cubes). %Y A295015 Cf. A000290 (the squares). %K A295015 nonn,base %O A295015 1,1 %A A295015 _M. F. Hasler_, Nov 12 2017