This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295025 #8 Dec 05 2021 10:31:31 %S A295025 125,512,125000,405224,512000,531441,1225043,5000211,5545233,13312053, %T A295025 43243551,54010152,102503232,115501303,125000000,221445125,320013504, %U A295025 400315553,405224000,512000000,531441000,1204550144,1225043000,2053225511,2253243231,2543302125 %N A295025 Cubes whose largest digit is 5. %C A295025 For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. Primitive terms, i.e., not of this form (or equivalently: without trailing '0'), are 125, 512, 405224, 531441, 1225043, 5000211, 5545233, 13312053, 43243551, ... %F A295025 a(n) = A294665(n)^3. %e A295025 512 is in the sequence because it is a cube, 512 = 8^3, and its largest digit is 5. %o A295025 (PARI) for(n=1,2e8, vecmax(digits(n^3))==5&&print1(n^3,",")) %o A295025 (Python) %o A295025 def ok(cube): return max(str(cube)) == "5" %o A295025 print([c for c in (i**3 for i in range(1370)) if ok(c)]) # _Michael S. Branicky_, Dec 05 2021 %Y A295025 Cf. A294665 (the corresponding cube roots), A278936 and A294663 (same for digit 3 and 4). %Y A295025 Cf. A000578 (the cubes). %K A295025 nonn,base %O A295025 1,1 %A A295025 _M. F. Hasler_, Nov 12 2017