This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295035 #11 Nov 13 2017 06:28:28 %S A295035 4,29,140,741,3853,19956,104096,541775,2819027,14671776,76356631, %T A295035 397392690,2068192977,10763659993,56018290276,291541126302, %U A295035 1517293977155,7896590852333,41096944195828,213884557644749,1113138825391146 %N A295035 Number of nX3 0..1 arrays with each 1 horizontally or vertically adjacent to 1 or 2 1s. %C A295035 Column 3 of A295040. %H A295035 R. H. Hardin, <a href="/A295035/b295035.txt">Table of n, a(n) for n = 1..210</a> %H A295035 Robert Israel, <a href="/A295035/a295035_1.pdf">Maple-assisted proof of formula</a> %F A295035 Empirical: a(n) = 4*a(n-1) +2*a(n-2) +17*a(n-3) +18*a(n-4) +53*a(n-5) -23*a(n-6) -38*a(n-7) +52*a(n-8) -19*a(n-9) -14*a(n-10) +16*a(n-11) -11*a(n-12) +a(n-14) -a(n-15) %F A295035 Empirical formula confirmed by _Robert Israel_, Nov 12 2017 (see link). %e A295035 Some solutions for n=7 %e A295035 ..1..1..0. .1..0..0. .0..0..0. .0..0..1. .0..1..0. .1..1..0. .0..0..0 %e A295035 ..0..0..0. .1..0..0. .1..1..1. .1..0..1. .0..1..0. .1..0..1. .0..0..1 %e A295035 ..1..1..0. .1..1..0. .0..0..1. .1..1..0. .0..1..0. .0..1..1. .0..1..1 %e A295035 ..0..0..0. .0..0..1. .0..0..0. .0..0..0. .0..1..0. .0..1..0. .1..1..0 %e A295035 ..0..0..0. .0..0..1. .1..1..0. .1..1..1. .1..0..1. .0..1..1. .1..0..1 %e A295035 ..1..1..0. .1..1..0. .0..1..0. .0..0..0. .1..0..1. .1..0..1. .0..0..1 %e A295035 ..1..0..0. .0..0..0. .0..0..0. .0..0..0. .1..1..1. .1..0..1. .0..0..1 %p A295035 q:= proc(a,b) local r,s,t,M,i; %p A295035 s:= floor((a-1)/8); %p A295035 if s <> (b-1) mod 8 then return 0 fi; %p A295035 s:= convert(s+8,base,2); %p A295035 r:= convert(8+floor((b-1)/8),base,2); %p A295035 t:= convert(8+ ((a-1) mod 8),base,2); %p A295035 M:= Vector(3); %p A295035 if s[1] = 1 and s[2] = 1 then M[1]:= 1; M[2]:= 1 fi; %p A295035 if s[2]=1 and s[3]=1 then M[2]:= M[2]+1; M[3]:= 1 fi; %p A295035 for i from 1 to 3 do if s[i]=1 then %p A295035 M[i]:= M[i]+r[i]+t[i]; %p A295035 if M[i] = 0 or M[i]>2 then return 0 fi; %p A295035 fi od; %p A295035 1 %p A295035 end proc: %p A295035 T:= Matrix(64,64, q); %p A295035 u:= Vector[row](64): %p A295035 v:= Vector(64): %p A295035 for i from 0 to 7 do u[8*i+1]:= 1; v[i+1]:= 1; %p A295035 od: %p A295035 seq(u . T^n . v, n = 1 .. 100); # _Robert Israel_, Nov 12 2017 %Y A295035 Cf. A295040. %K A295035 nonn %O A295035 1,1 %A A295035 _R. H. Hardin_, Nov 12 2017