This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295053 #5 Nov 18 2017 20:54:07 %S A295053 1,2,10,24,52,101,186,329,568,962,1608,2662,4377,7162,11679,18999, %T A295053 30855,50051,81124,131415,212802,344505,557621,902467,1460457,2363322, %U A295053 3824207,6187988,10012686,16201198,26214442,42416233,68631304,111048203 %N A295053 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(0) + b(1) + ... + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences. %C A295053 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. Guide to related sequencres: %C A295053 A295053: a(n) = a(n-1) + a(n-2) + b(0) + b(1) + ... + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3 %C A295053 A295054: a(n) = a(n-1) + a(n-2) + b(1) + b(2) + ... + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3 %C A295053 A295055: a(n) = a(n-2) + b(1) + b(2) + ... + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3 %C A295053 A295056: a(n) = 2*a(n-1) + b(n-1), a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3 %C A295053 A295057: a(n) = 2*a(n-1) + b(n-1), a(0) = 2, a(1) = 5, b(0) = 1 %C A295053 A295058: a(n) = 2*a(n-1) - b(n-1), a(0) = 3, a(1) = 5, b(0) = 1 %C A295053 A295059: a(n) = 2*a(n-1) + b(n-2), a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3 %C A295053 A295060: a(n) = 2*a(n-1) - b(n-2), a(0) = 3, a(1) = 5, b(0) = 1, b(1) = 2 %C A295053 A295061: a(n) = 4*a(n-1) + b(n-1), a(0) = 1, a(1) = 3, b(0) = 2 %C A295053 A295062: a(n) = 4*a(n-2) + b(n-2), a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4 %C A295053 A295063: a(n) = 4*a(n-2) + b(n-1) + b(n-2), a(0) = 1, a(1) = 3, b(0) = 2 %C A295053 A295064: a(n) = 8*a(n-3) + b(n-1), a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2 %C A295053 A295065: a(n) = 8*a(n-3) + b(n-2), a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2 %C A295053 A295066: a(n) = 2*a(n-2) + b(n-1), a(0) = 1, a(1) = 3, b(0) = 2 %C A295053 A295067: a(n) = 2*a(n-2) + b(n-2), a(0) = 1, a(1) = 3, b(0) = 2 %C A295053 A295068: a(n) = 2*a(n-2) - b(n-1) + n, a(0) = 3, a(1) = 4, b(0) = 1 %C A295053 A295069: a(n) = 2*a(n-2) - b(n-2) + n, a(0) = 3, a(1) = 4, b(0) = 1 %C A295053 A295070: a(n) = a(n-2) + b(n-1) + b(n-2), a(0) = 3, a(1) = 2, b(0) = 3 %C A295053 A295133: a(n) = 3*a(n-1) + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3 %C A295053 A295134: a(n) = 3*a(n-1) + b(n-1) - 1, a(0) = 1, a(1) = 2, b(0) = 3 %C A295053 A295135: a(n) = 3*a(n-1) + b(n-1) - 2, a(0) = 1, a(1) = 2, b(0) = 3 %C A295053 A295136: a(n) = 3*a(n-1) + b(n-1) - 3, a(0) = 1, a(1) = 2, b(0) = 3 %C A295053 A295137: a(n) = 3*a(n-1) + b(n-1) - n, a(0) = 1, a(1) = 2, b(0) = 3 %C A295053 A295138: a(n) = 3*a(n-2) + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3 %C A295053 A295139: a(n) = 3*a(n-1) + b(n-2), a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4 %C A295053 A295140: a(n) = 3*a(n-1) - b(n-2) + 4, a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4 %C A295053 A295141: a(n) = 2*a(n-1) + a(n-2) + b(n-2), a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4 %C A295053 A295142: a(n) = 2*a(n-1) + a(n-2) + b(n-2), a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4 %C A295053 A295143: a(n) = 2*a(n-1) + a(n-1) + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4 %C A295053 A295144: a(n) = 2*a(n-1) + a(n-2) + b(n-1), a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4 %C A295053 A295145: a(n) = a(n-1) + 2*a(n-2) + b(n-2), a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4 %C A295053 A295146: a(n) = a(n-1) + 2*a(n-2) + b(n-2), a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4 %C A295053 A295147: a(n) = a(n-1) + 2*a(n-2) + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4 %C A295053 A295148: a(n) = a(n-1) + 2*a(n-2) + b(n-1), a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4 %H A295053 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A295053 a(0) = 1, a(1) = 2, b(0) = 3 %e A295053 b(1) = 4 (least "new number") %e A295053 a(2) = a(1) + a(0) + b(0) + b(1) = 10 %e A295053 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, ...) %t A295053 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A295053 a[0] = 1; a[1] = 2; b[0] = 3; %t A295053 a[n_] := a[n] = a[n - 1] + a[n - 2] + Sum[b[k], {k, 0, n - 1}]; %t A295053 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A295053 Table[a[n], {n, 0, 18}] (* A295053 *) %t A295053 Table[b[n], {n, 0, 10}] %Y A295053 Cf. A294860. %K A295053 nonn,easy %O A295053 0,2 %A A295053 _Clark Kimberling_, Nov 18 2017