A295054 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(1) + b(2) + ... + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 7, 18, 40, 81, 153, 276, 482, 823, 1383, 2298, 3788, 6209, 10137, 16505, 26821, 43526, 70569, 114340, 185178, 299812, 485310, 785469, 1271154, 2057027, 3328615, 5386107, 8715219, 14101856, 22817639, 36920094, 59738368, 96659134
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3 b(1) = 4 (least "new number") a(2) = a(1) + a(0) + b(1) = Complement: (b(n)) = (3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A295053.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = a[n - 1] + a[n - 2] + Sum[b[k], {k, 1, n - 1}]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295054 *) Table[b[n], {n, 0, 10}]
Comments