A295055 Solution of the complementary equation a(n) = a(n-2) + b(0) + b(1) + ... + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 8, 14, 26, 39, 60, 83, 115, 150, 195, 245, 306, 373, 452, 538, 637, 744, 865, 995, 1140, 1295, 1467, 1650, 1851, 2064, 2296, 2541, 2806, 3085, 3385, 3700, 4037, 4390, 4767, 5161, 5580, 6017, 6480, 6962, 7471, 8000, 8557, 9135, 9742, 10371, 11030, 11712
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3 b(1) = 4 (least "new number") a(2) = a(0) + b(0) + b(1) = 8 Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A295053.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = a[n - 2] + Sum[b[k], {k, 0, n - 1}]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295055 *) Table[b[n], {n, 0, 10}]
Comments