A295056 Solution of the complementary equation a(n) = 2*a(n-1) + b(n-1), where a(0) = 1, a(1) = 4, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 4, 11, 27, 60, 127, 262, 533, 1076, 2164, 4341, 8696, 17407, 34830, 69677, 139372, 278763, 557546, 1115113, 2230248, 4460519, 8921062, 17842149, 35684324, 71368676, 142737381, 285474792, 570949615
Offset: 0
Examples
a(0) = 1, a(1) = 4, b(0) = 2 b(1) = 3 (least "new number") a(2) = 2*a(1) + b(1) = 11 Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A295053.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 4; b[0] = 2; a[n_] := a[n] = 2 a[n - 1] + b[n - 1]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295056 *) Table[b[n], {n, 0, 10}]
Comments