A295057 Solution of the complementary equation a(n) = 2*a(n-1) + b(n-1), where a(0) = 2, a(1) = 5, b(0) = 1, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 5, 13, 30, 66, 139, 286, 581, 1172, 2355, 4722, 9458, 18931, 37878, 75773, 151564, 303147, 606314, 1212649, 2425320, 4850663, 9701350, 19402725, 38805476, 77610979, 155221986, 310444001, 620888033
Offset: 0
Examples
a(0) = 2, a(1) = 5, b(0) = 1 b(1) = 3 (least "new number") a(2) = 2*a(1) + b(1) = 13 Complement: (b(n)) = (1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A295053.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 2; a[1] = 5; b[0] = 1; a[n_] := a[n] = 2 a[n - 1] + b[n - 1]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295057 *) Table[b[n], {n, 0, 10}]
Comments