A295058 Solution of the complementary equation a(n) = 2*a(n-1) - b(n-1), where a(0) = 3, a(1) = 5, b(0) = 1, and (a(n)) and (b(n)) are increasing complementary sequences.
3, 5, 8, 12, 18, 29, 49, 88, 165, 317, 620, 1225, 2434, 4851, 9683, 19346, 38671, 77320, 154617, 309210, 618395, 1236764, 2473501, 4946974, 9893918, 19787805, 39575578, 79151123, 158302212, 316604389, 633208742
Offset: 0
Examples
a(0) = 3, a(1) = 5, b(0) = 1 b(1) = 2 (least "new number") a(2) = 2*a(1) - b(1) = 8 Complement: (b(n)) = (1, 2, 4, 6, 7, 9, 10, 11, 13, 14, 15, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A295053.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 3; a[1] = 5; b[0] = 1; a[n_] := a[n] = 2 a[n - 1] - b[n - 1]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295058 *) Table[b[n], {n, 0, 10}]
Comments